STEREOCONTROLLED SYNTHESIS OF α, β -UNSATURATED CARBOXYLIC ESTERS FROM O-METHYL-C,O-BIS(TRIMETHYLSILYL)KETENE ACETAL AND ALIPHATIC ALDEHYDES

Isamu Matsuda^{*} and Yusuke Izumi Department of Synthetic Chemistry, Faculty of Engineering, Nagoya University, Chikusa, Nagoya 464, Japan

Summary: (R^*, S^*) Selective aldol type reaction of O-methyl-C,O-bis(trimethyl-silyl)ketene acetal (1) with aldehydes and stereoselective formation of α,β -unsaturated carboxylic esters are attained by the combination of Z-1 and Lewis acids.

One of the most versatile methods to *E* selective synthesis of α,β -unsaturated carboxylic esters is the Wadsworth-Wittig-Horner type reaction¹ which is controlled thermodynamically. Alkyl trimethylsilylacetate carbanion is also used as a highly reactive condensation reagent with carbonyl compounds.², ³ But the stereocontrol of the reactions is almost impossible. From the viewpoint of synthetic utility, it is desirable to obtain each isomer selectively from an identical starting material by stereocontrolled reaction.

It is reported that O-(trimethylsilyl)ketene acetals react readily with carbonyl compounds to give aldol type products in the presence of TiCl_4 .⁴ We recently reported the smooth Michael type addition of ketene acetal $\frac{1}{2}$ to α,β -unsaturated ketones by the assist of TiCl_4 .^{5, 6} If ketene acetal $\frac{1}{2}$ could react with carbonyl compounds to give aldol products, it would be utilized for the

R-CHO

stereoselective synthesis of $\frac{3}{2}$ because of the possibility to control the stereochemistry in the reaction sequence, aldol type addition and elimination steps. We report herein a stereocontrolled synthesis of methyl dodec-2-enoate $\frac{3}{2}$ in the one pot reaction of $\frac{1}{2}$ with nonanal by the selection of Lewis acid as an activating agent.

To an equimolar mixture of nonanal and TiCl₄ in CH₂Cl₂ was added dropwisely a CH₂Cl₂ solution of ketene acetal $\frac{1}{2}$ (*E*:*Z* = 3:1) at -78°C. After the similar procedure reported by Mukaiyama,⁴ aldol type product 2a was isolated in 91% yield as the mixture of two diastereomers $[(2R^*, 3S):(2R^*, 3R^*) = 3:1]$.^{7,8} The relative configuration of isolated each isomer of 2a was deduced from the geometry of 3a which was formed by the *anti* elimination of Me₃SiOH in the interaction of each isomer with BF₃·Et₂O.⁹ The analogous aldol products 2b⁸ $[98\%, (2R^*, 3S^*):(2R^*, 3R^*) = 3:1], 2c^8 [75\%, (2R^*, 3S^*):(2R^*, 3R^*) = 4:1], and 2d⁸$ $<math>[96\%, (2R^*, 3S^*):(2R^*, 3R^*) = >95:<5]$ were obtained by the reaction of $\frac{1}{2}$ with the corresponding aldehydes.

Although stereoselective synthesis of \mathfrak{F} is accomplished by the elimination reaction from each isolated pure diastereomer of \mathfrak{F} , it is desirable to obtain \mathfrak{F} directly from \mathfrak{f} and aldehydes. α,β -Unsaturated esters \mathfrak{F} were isolated directly in the reaction of \mathfrak{f} with aldehydes by the assist of an equivalent of Lewis acid under the appropriate condition. The results obtained in the case of nonanal are summarized in Table 1 as a typical example. The drastic variation of the \mathbb{E}/\mathbb{Z} ratio in $\mathfrak{F}\mathfrak{g}$ from 14/86 (TiCl₄) to 93/7 (AlCl₃) is observed by the selection of Lewis acid.

Lewis acid	Solvent	Condition	ЯŖ	
			Yield (%) ^a	$E: Z^{\mathbf{b}}$
TiCl ₄	CH ₂ Cl ₂	-95°C 3h → rt 2h	91	14:86
TiCl	CH2C12	rt 3h	82	27:73
TiCl	CH_C1_	-78°C 3h → rt 2h	90	5:95 ^C
BF3• Et20	CH2C12	-95°C 3h → rt 2h	90	23:77
AICL	с _е н _е	reflux 8h	70	89:11
AICL	CC14	reflux 8h	89 ^d	93:7
AlCl	CCl	reflux 8h	75 ^d	96:4 [°]
ZnCl ₂	C6H6/THF	reflux 6h	56^{e}	96:4
$2nCl_2$	Toluene/THF	reflux 22h	92	69:31

Table 1. Effect of Lewis acid in the direct synthesis of 3a from 1 and nonanal.

^aIsolated yield. ^bDetermined by GLC (SE-30). ^cZ rich (E:Z = 5:95) 1 was used, otherwise E rich (E:Z = 3:1) 1 was used. ^dTwo moles of 1 was used. ^e20% of ($2R^*, 3R^*$) 2a was isolated.

Diastereomer of 2a	Lewis acid	Condition	ې ۲ield (%) ^a	æ E:Z ^b
$(2R^*, 3S^*)$	TiCl ₄	CH2C12/rt/1h	93	2:98
$(2R^*, 3R^*)$	TiC14	$CH_2Cl_2/rt/1h$	97	99:1
$(2R^*, 3S^*)$	A1C1	CCl ₄ /reflux/6h	78	89:11
(2 <i>R</i> [*] , 3 <i>R</i> [*])	A1C13	$CCl_4/reflux/6h$	73	80:20

Table 2. Stereoselectivity of Me₃SiOH elimination from 2a.

^aIsolated yield. ^bDetermined by GLC (SE-30).

The elimination of Me_3SiOX is highly regulated to *anti* manner in the case of TiCl₄. On the other hand, the result with AlCl₃ seems to be controlled by the opposite manner of elimination in each isomer of 2e, *syn* manner for $(2R^*, 3s^*)$ 2e and *anti* manner for $(2R^*, 3R^*)$ 2e. These deduction are based on the other elimination reactions from the isolated respective diastereomers of 2aby the interaction of TiCl₄ or AlCl₃. The results are summarized in Table 2.

The results in Table $\hat{2}$ show that the geometrical ratio of $\Im a$ reflects the diastereomerical ratio of 2e in the case of TiCl_{A} . Thus, the higher $(2R^*, 3S^*)$ selectivity in aldol reaction secures the higher Z selectivity of 3a. Since the stereochemistry of aldol reactions is affected by the geometry of enolate anion,¹⁰ Z selective 1 (E:Z = 5:95) was prepared by the addition of 18% HMPTA to THF, ¹¹, ¹² and served to the reaction with nonanal. Remarkable $(2R^*, 3S^*)$ selectivity $[(2R^*, 3S^*): (2R^*, 3R^*) = 95:5]$ was observed in TiCl₄ assisted aldol reaction at -78° C. This result is consistent with the (R^*, S^*) preference of γ -lactone enolate 4, in which the relationship between trimethylsiloxy and trimethylsilyl groups is fixed to cis.¹³ It is interesting that the preferred geometry of 1 (2) for stereoselective aldol reaction contrast with the result of ketene acetal $5.^{14}$ Although the cyclic transition state is posturated in TiCl₄ assisted aldol reactions, 13, 14 the (R^*, S^*) selective result which is observed regardless of the geometry of 1 would be explained by the participation of the acyclic transition state.^{15, 16}

Thus, stereoselective synthesis of a was accomplished in one pot reaction of Z-1 with nonanal by the selection of Lewis acid, TiCl₄ (Z) and AlCl₃ (E).

Acknowledgment: The authors thank the Ministry of Education, Japan, for Grantin-Aid No. 565283 and Shin-etsu Chemical Co. for the supply of Me₃SiCl.

REFERENCES AND NOTES

- (a) D. J. Faulkner, Synthesis, 175 (1971); (b) J. Reucroft and P. G. Sammes, Quart. Rev., 25, 135 (1971); (c) J. Boutagy and R. Thomas, Chem. Rev., <u>74</u>, 87 (1974); (d) W. S. Wadsworth, Jr., Organic Reactions, <u>25</u>, 73 (1977).
- K. Shimoji, H. Taguchi, K. Oshima, H. Yamamoto, and H. Nozaki, J. Amer. Chem. Soc., <u>96</u>, 1620 (1974), Bull. Chem. Soc. Jpn., 47, 2529 (1974).
- 3. S. L. Hartzel, D. F. Sullivan, and M. W. Rathke, *Tetrahedron Lett.*, 1403 (1974).
- 4. K. Saigo, M. Osaki, and T. Mukaiyama, Chem. Lett., 989 (1975), 769 (1976).
- 5. The mixture of stereoisomers (E:Z = 3:1) was obtained in THF solution.
- 6. I. Matsuda, S. Murata, and Y. Izumi, J. Org. Chem., <u>45</u>, 237 (1980).
- 7. The ratio of $(2R^*, 3S^*)$ and $(2R^*, 3R^*)$ was determined by the comparison of O-methyl signals in the p.m.r. spectrum of the mixture.
- 8. All these compounds were isolated by column chromatography $(C_{6}H_{6}/hexane/AcOEt = 49/49/2)$ and showed correct values of analyses and corresponding i.r. and p.m.r. spectra, except $(2R^*, 3R^*)$ 2d and 2e. Spectral data in CCl_4 of 2a are shown.
 - $(2R^*, 3S^*)$ 2a; $v_{C=0}$ 1714 cm⁻¹; δ 0.12 (9H, s), 0.89 (3H, t, J=5.5 Hz), 1.3 (14H, m), 2.14 (1H, d, J=7.0 Hz), 2.16 (1H, br.s), 3.61 (3H, s), 4.1 (1H, m).
 - $(2R^*, 3R^*)$ 2a; $v_{C=0}$ 1702 cm⁻¹; δ 0.12 (9H, s), 0.90 (3H, t, J=5.5 Hz), 1.3 (14H, m), 2.11 (1H, d, J=3.3 Hz), 3.1 (1H, br.s), 3.5 (1H, m), 3.68 (3H, s).
- 9. P. F. Hudrlik and D. Peterson, Tetrahedron Lett., 1173 (1974), J. Amer. Chem. Soc., <u>97</u>, 1464 (1975).
- C. H. Heathcock, C. T. Buse, W. A. Kleschick, M. C. Pirrung, J. E. Sohn, and J. Lampe, J. Org. Chem., <u>45</u>, 1066 (1980).
- 11. R. E. Ireland, R. H. Mueller, and A. K. Willard, J. Amer. Chem. Soc., <u>98</u>, 2868 (1976).
- 12. G. S. Burlachenko, T. A. Manukina, and Yu. I. Baukov, J. Organometal. Chem., 33, C59 (1971).
- 13. K. Yamamoto, Y. Tomo, and S. Suzuki, Tetrahedron Lett., 21, 2861 (1980).
- 14. T. H. Chan, T. Aida, P. W. K. Lau, V. Groys, and D. N. Harpp, Tetrahedron Lett., 4029 (1979).
- 15. S. Murata, M. Suzuki, and R. Noyori, J. Amer. Chem. Soc., 102, 3249 (1980).
- Y. Yamamoto, H. Yatagai, Y. Naruta, K. Maruyama, J. Amer. Chem. Soc., <u>102</u>, 7107 (1980).

(Received in Japan 31 January 1981)